Wprowadzenie do ARIMA: modele niesezonowe Równanie prognostyczne ARIMA (p, d, q): Modele ARIMA są, w teorii, najbardziej ogólną klasą modeli do prognozowania szeregów czasowych, które można przekształcić na 8220stacjonarne 8221 przez różnicowanie (jeśli to konieczne), być może w połączeniu z transformacjami nieliniowymi, takimi jak rejestracja lub deflacja (jeśli to konieczne). Zmienna losowa, która jest szeregiem czasowym, jest nieruchoma, jeśli jej właściwości statystyczne są stałe w czasie. Seria stacjonarna nie ma trendu, jej wahania wokół średniej mają stałą amplitudę i poruszają się w spójny sposób. tj. jego krótkoterminowe wzorce czasu losowego zawsze wyglądają tak samo w sensie statystycznym. Ten ostatni warunek oznacza, że jego autokorelacje (korelacje z jego własnymi wcześniejszymi odchyleniami od średniej) pozostają stałe w czasie, lub równoważnie, że jego widmo mocy pozostaje stałe w czasie. Zmienna losowa tej postaci może być oglądana (jak zwykle) jako kombinacja sygnału i szumu, a sygnał (jeśli jest widoczny) może być wzorem szybkiej lub wolnej średniej rewersji, lub sinusoidalnej oscylacji, lub szybkiej przemiany w znaku , a także może mieć składnik sezonowy. Model ARIMA może być postrzegany jako 8220filter8221, który próbuje oddzielić sygnał od szumu, a sygnał jest następnie ekstrapolowany w przyszłość w celu uzyskania prognoz. Równanie prognostyczne ARIMA dla stacjonarnych szeregów czasowych jest równaniem liniowym (to jest typu regresyjnym), w którym predyktory składają się z opóźnień zmiennej zależnej i opóźnień błędów prognoz. Oznacza to: Przewidywaną wartość Y stałej stałej lub ważoną sumę jednej lub więcej ostatnich wartości Y i lub ważoną sumę jednej lub więcej ostatnich wartości błędów. Jeśli predykatory składają się tylko z opóźnionych wartości Y., jest to model czysto autoregresyjny (8220a-regressed8221), który jest tylko szczególnym przypadkiem modelu regresji i który może być wyposażony w standardowe oprogramowanie regresyjne. Na przykład, autoregresyjny model pierwszego rzędu (8220AR (1) 8221) dla Y jest prostym modelem regresji, w którym zmienna niezależna jest po prostu Y opóźniona o jeden okres (LAG (Y, 1) w Statgraphics lub YLAG1 w RegressIt). Jeśli niektóre z predyktorów są opóźnieniami błędów, to model ARIMA NIE jest modelem regresji liniowej, ponieważ nie ma sposobu, aby określić 8220last okres8217s błąd8221 jako zmienną niezależną: błędy muszą być obliczane na podstawie okresu do okresu kiedy model jest dopasowany do danych. Z technicznego punktu widzenia problem z wykorzystaniem opóźnionych błędów jako czynników predykcyjnych polega na tym, że przewidywania model8217 nie są liniowymi funkcjami współczynników. mimo że są liniowymi funkcjami przeszłych danych. Współczynniki w modelach ARIMA, które zawierają opóźnione błędy, muszą być oszacowane przez nieliniowe metody optymalizacji (8220hill-climbing8221), a nie przez samo rozwiązanie układu równań. Akronim ARIMA oznacza Auto-Regressive Integrated Moving Average. Lagi ze stacjonarnej serii w równaniu prognostycznym są nazywane "wartościami dodatnimi", opóźnienia błędów prognoz są nazywane "przesunięciem średniej", a szeregi czasowe, które muszą być różnicowane, aby stały się stacjonarne, są uważane za "podzielone" wersje stacjonarnej serii. Modele Random Walk i Random-Trend, modele autoregresyjne i modele wygładzania wykładniczego są szczególnymi przypadkami modeli ARIMA. Niesezonowy model ARIMA jest klasyfikowany jako model DAIMIMA (p, d, q), gdzie: p to liczba terminów autoregresyjnych, d to liczba niesezonowych różnic potrzebnych do stacjonarności, a q to liczba opóźnionych błędów prognozy w równanie predykcji. Równanie prognostyczne jest skonstruowane w następujący sposób. Po pierwsze, niech y oznacza różnicę d Y. Oznacza to: Zwróć uwagę, że druga różnica Y (przypadek d2) nie jest różnicą od 2 okresów temu. Jest to raczej różnica między pierwszą a różnicą. który jest dyskretnym analogiem drugiej pochodnej, tj. lokalnym przyspieszeniem szeregu, a nie jego lokalnym trendem. Pod względem y. ogólne równanie prognostyczne jest następujące: Tutaj parametry średniej ruchomej (9528217 s) są zdefiniowane w taki sposób, że ich znaki są ujemne w równaniu, zgodnie z konwencją wprowadzoną przez Boxa i Jenkinsa. Niektórzy autorzy i oprogramowanie (w tym język programowania R) definiują je, aby zamiast tego mieli znaki plus. Kiedy rzeczywiste liczby są podłączone do równania, nie ma dwuznaczności, ale ważne jest, aby wiedzieć, którą konwencję używa twoje oprogramowanie podczas odczytu danych wyjściowych. Często parametry są tam oznaczone przez AR (1), AR (2), 8230 i MA (1), MA (2), 8230 itd. Aby zidentyfikować odpowiedni model ARIMA dla Y. zaczynasz od określenia kolejności różnicowania (d) konieczność stacjonowania serii i usunięcia ogólnych cech sezonowości, być może w połączeniu z transformacją stabilizującą warianty, taką jak rejestracja lub deflacja. Jeśli zatrzymasz się w tym momencie i będziesz przewidywał, że zróżnicowana seria jest stała, dopasowałeś jedynie model losowego spaceru lub losowego trendu. Jednak stacjonarne serie mogą nadal mieć błędy związane z auto - korelacjami, co sugeruje, że w równaniu prognostycznym potrzebna jest również pewna liczba terminów AR (p 8805 1) i kilka warunków MA (q 8805 1). Proces określania wartości p, d i q, które są najlepsze dla danej serii czasowej, zostanie omówiony w dalszych sekcjach notatek (których linki znajdują się na górze tej strony), ale podgląd niektórych typów nietypowych modeli ARIMA, które są powszechnie spotykane, podano poniżej. ARIMA (1,0,0) Model autoregresyjny pierwszego rzędu: jeśli seria jest stacjonarna i autokorelowana, być może można ją przewidzieć jako wielokrotność jej poprzedniej wartości plus stałą. Równanie prognostyczne w tym przypadku wynosi 8230, co samo w sobie cofnęło się Y o jeden okres. Jest to model 8220ARIMA (1,0,0) constant8221. Jeżeli średnia z Y wynosi zero, wówczas nie zostałoby uwzględnione stałe wyrażenie. Jeśli współczynnik nachylenia 981 1 jest dodatni i mniejszy niż 1 w skali (musi być mniejszy niż 1 w wielkości, jeśli Y jest nieruchomy), model opisuje zachowanie polegające na odwróceniu średniej, w którym należy przypisać wartość kolejnego okresu 817 razy 981 razy jako daleko od średniej, jak ta wartość okresu. Jeżeli 981 1 jest ujemny, przewiduje zachowanie średniej odwrócenia z naprzemiennością znaków, tj. Przewiduje również, że Y będzie poniżej średniego następnego okresu, jeśli jest powyżej średniej tego okresu. W modelu autoregresyjnym drugiego rzędu (ARIMA (2,0,0)), po prawej stronie pojawi się również termin Y t-2 i tak dalej. W zależności od znaków i wielkości współczynników, model ARIMA (2,0,0) może opisywać układ, którego średnia rewersja zachodzi w sposób oscylacyjny sinusoidalnie, podobnie jak ruch masy na sprężynie poddanej losowym wstrząsom . Próba losowa ARIMA (0,1,0): Jeśli seria Y nie jest nieruchoma, najprostszym możliwym modelem jest model losowego spaceru, który można uznać za ograniczający przypadek modelu AR (1), w którym autoregresyjny Współczynnik jest równy 1, tzn. szeregowi z nieskończenie powolną średnią rewersją. Równanie predykcji dla tego modelu można zapisać jako: gdzie stałym terminem jest średnia zmiana okresu do okresu (tj. Dryf długoterminowy) w Y. Ten model może być dopasowany jako model regresji bez przechwytywania, w którym pierwsza różnica Y jest zmienną zależną. Ponieważ zawiera on (tylko) niesezonową różnicę i stały termin, jest klasyfikowany jako model DAIMA (0,1,0) ze stałą. Często Modelem bezładnego spaceru byłby ARIMA (0,1; 0) model bez stałego ARIMA (1,1,0) różny model autoregresyjny pierwszego rzędu: Jeśli błędy modelu chodzenia swobodnego są autokorelowane, być może problem można rozwiązać, dodając jedno opóźnienie zmiennej zależnej do równania predykcji - - to znaczy przez regresję pierwszej różnicy Y, która sama w sobie jest opóźniona o jeden okres. To przyniosłoby następujące równanie predykcji: które można przekształcić na To jest autoregresyjny model pierwszego rzędu z jednym rzędem niesezonowego różnicowania i stałym terminem - tj. model ARIMA (1,1,0). ARIMA (0,1,1) bez stałego prostego wygładzania wykładniczego: Inna strategia korekcji błędów związanych z autokorelacją w modelu losowego spaceru jest zasugerowana przez prosty model wygładzania wykładniczego. Przypomnijmy, że w przypadku niektórych niestacjonarnych szeregów czasowych (na przykład takich, które wykazują głośne wahania wokół wolno zmieniającej się średniej), model chodzenia losowego nie działa tak dobrze, jak średnia ruchoma wartości z przeszłości. Innymi słowy, zamiast brać ostatnią obserwację jako prognozę następnej obserwacji, lepiej jest użyć średniej z ostatnich kilku obserwacji, aby odfiltrować hałas i dokładniej oszacować średnią miejscową. Prosty model wygładzania wykładniczego wykorzystuje wykładniczo ważoną średnią ruchomą przeszłych wartości, aby osiągnąć ten efekt. Równanie predykcji dla prostego modelu wygładzania wykładniczego można zapisać w wielu matematycznie równoważnych formach. jedną z nich jest tak zwana forma 8220, korekta zera 8221, w której poprzednia prognoza jest korygowana w kierunku popełnionego błędu: Ponieważ e t-1 Y t-1 - 374 t-1 z definicji, można to przepisać jako : co jest równaniem ARIMA (0,1,1) - bez stałej prognozy z 952 1 1 - 945. Oznacza to, że możesz dopasować proste wygładzanie wykładnicze, określając je jako model ARIMA (0,1,1) bez stała, a szacowany współczynnik MA (1) odpowiada 1-minus-alfa w formule SES. Przypomnijmy, że w modelu SES średni wiek danych w prognozach z wyprzedzeniem 1 roku wynosi 1 945. Oznacza to, że będą one pozostawać w tyle za trendami lub punktami zwrotnymi o około 1 945 okresów. Wynika z tego, że średni wiek danych w prognozach 1-okresowych modelu ARIMA (0,1,1) - bez stałej wynosi 1 (1 - 952 1). Tak więc, na przykład, jeśli 952 1 0.8, średnia wieku wynosi 5. Ponieważ 952 1 zbliża się do 1, ARIMA (0,1,1) - bez stałego modelu staje się bardzo długookresową średnią ruchomą, a jako 952 1 zbliża się do 0, staje się modelem losowego chodzenia bez dryfu. Jaki jest najlepszy sposób korekcji autokorelacji: dodawanie terminów AR lub dodawanie terminów MA W dwóch poprzednich modelach omówionych powyżej, problem związanych z autokorelacją błędów w modelu losowego spaceru ustalono na dwa różne sposoby: przez dodanie opóźnionej wartości różnej serii do równania lub dodanie opóźnionej wartości błędu prognozy. Które podejście jest najlepsze Zasada praktyczna dla tej sytuacji, która zostanie omówiona bardziej szczegółowo w dalszej części, polega na tym, że pozytywna autokorelacja jest zwykle najlepiej traktowana przez dodanie do modelu warunku AR, a negatywna autokorelacja jest zwykle najlepiej traktowana przez dodanie Termin magisterski. W biznesowych i ekonomicznych szeregach czasowych negatywna autokorelacja często pojawia się jako artefakt różnicowania. (Ogólnie rzecz biorąc, różnicowanie zmniejsza pozytywną autokorelację, a nawet może spowodować przełączenie z autokorelacji dodatniej na ujemną). Tak więc model ARIMA (0,1,1), w którym różnicowanie jest połączone z terminem MA, jest częściej używany niż Model ARIMA (1,1,0). ARIMA (0,1,1) o stałym prostym wygładzaniu wykładniczym ze wzrostem: Dzięki wdrożeniu modelu SES jako modelu ARIMA można uzyskać pewną elastyczność. Po pierwsze, szacowany współczynnik MA (1) może być ujemny. odpowiada to współczynnikowi wygładzania większemu niż 1 w modelu SES, co zwykle nie jest dozwolone w procedurze dopasowania modelu SES. Po drugie, masz możliwość włączenia stałego warunku w modelu ARIMA, jeśli chcesz, aby oszacować średni niezerowy trend. Model ARIMA (0,1,1) ze stałą ma równanie prognozy: prognozy jednokresowe z tego modelu są jakościowo podobne do tych z modelu SES, z tym że trajektoria prognoz długoterminowych jest zwykle linia nachylenia (której nachylenie jest równe mu) zamiast linii poziomej. ARIMA (0,2,1) lub (0,2,2) bez stałego liniowego wygładzania wykładniczego: liniowe modele wygładzania wykładniczego są modelami ARIMA, które wykorzystują dwie niesezonowe różnice w połączeniu z terminami MA. Druga różnica w serii Y nie jest po prostu różnicą między Y a nią opóźnioną o dwa okresy, ale raczej jest pierwszą różnicą pierwszej różnicy - a. e. zmiana w Y w okresie t. Tak więc druga różnica Y w okresie t jest równa (Y t - Y t-1) - (Y t-1 - Y t-2) Y t - 2Y t-1 Y t-2. Druga różnica funkcji dyskretnej jest analogiczna do drugiej pochodnej funkcji ciągłej: mierzy ona przyspieszenie cytadania lub inną krzywiznę w funkcji w danym punkcie czasu. Model ARIMA (0,2,2) bez stałej przewiduje, że druga różnica szeregu równa się funkcji liniowej dwóch ostatnich błędów prognozy: która może być uporządkowana jako: gdzie 952 1 i 952 2 to MA (1) i Współczynniki MA (2). Jest to ogólny liniowy model wygładzania wykładniczego. w zasadzie taki sam jak model Holt8217s, a model Brown8217s to szczególny przypadek. Wykorzystuje wykładniczo ważone średnie ruchome do oszacowania zarówno lokalnego poziomu, jak i lokalnego trendu w serii. Długoterminowe prognozy z tego modelu zbiegają się do linii prostej, której nachylenie zależy od średniej tendencji obserwowanej pod koniec serii. ARIMA (1,1,2) bez stałego liniowego tłumienia wykładniczego. Ten model jest zilustrowany na załączonych slajdach w modelach ARIMA. Ekstrapoluje lokalny trend na końcu serii, ale spłaszcza go na dłuższych horyzontach prognozy, wprowadzając nutę konserwatyzmu, praktykę, która ma empiryczne wsparcie. Zobacz artykuł na ten temat: "Dlaczego działa Damped Trend" autorstwa Gardnera i McKenziego oraz artykuł "Zgodny z legendą" Armstronga i in. dla szczegółów. Ogólnie zaleca się trzymać modele, w których co najmniej jedno z p i q jest nie większe niż 1, tj. Nie próbować dopasować modelu takiego jak ARIMA (2,1,2), ponieważ może to prowadzić do przeuczenia oraz pytania o współczynniku równomolowym, które omówiono bardziej szczegółowo w uwagach dotyczących struktury matematycznej modeli ARIMA. Implementacja arkusza kalkulacyjnego: modele ARIMA, takie jak opisane powyżej, można łatwo wdrożyć w arkuszu kalkulacyjnym. Równanie predykcji jest po prostu równaniem liniowym, które odnosi się do przeszłych wartości pierwotnych szeregów czasowych i przeszłych wartości błędów. W ten sposób można skonfigurować arkusz kalkulacyjny prognozowania ARIMA, przechowując dane w kolumnie A, formułę prognozowania w kolumnie B i błędy (dane minus prognozy) w kolumnie C. Formuła prognozowania w typowej komórce w kolumnie B byłaby po prostu wyrażenie liniowe odnoszące się do wartości w poprzednich wierszach kolumn A i C, pomnożone przez odpowiednie współczynniki AR lub MA przechowywane w komórkach w innym miejscu arkusza kalkulacyjnego. Szacowanie w modelu średniej ruchomej pierwszego rzędu przez skończone przybliżenie autoregresyjne. Niektóre asymptotyczne wyniki Ral Pedro Mentz University of Tucumn, Tucumn, Argentina Dostępne online 1 marca 2002. Aby oszacować w modelu ytutut 1. rozważamy propozycję Durbina (Biometrika, 1969). Polega ona na dopasowaniu autoregresji zamówienia k do danych i wyprowadzeniu z tego oszacowania. Granicę prawdopodobieństwa i wariancję ograniczającego rozkładu normalnego przedstawiono i omówiono szczegółowo, gdy wielkość próby T, ale k pozostaje stała. Różnice między wartościami wynikowymi a wartościami odpowiadającymi estymatorowi największej wiarygodności są wykładniczo malejącymi funkcjami k. Kilka modyfikacji estymatora zostało omówionych i uznanych za spójne, ale asymptotycznie nieefektywne. To badanie jest częścią autorów dr. dysertacja w Departamencie Statystyki Uniwersytetu Stanforda. Uznanie należy się profesorowi T. W. Anderson za hojne wskazówki i pomoc podczas kierowania tą pracą. Praca w Stanford była wspierana przez umowę badawczą z biurem marynarki (Contract N00014-75-C-0442, NR-042-034, T. W. Anderson, Project Director). Copyright 1977 Opublikowany przez Elsevier B. V. Cytowanie artykułów () Autoregresyjne średnie ruchome błędy błędów (błędy ARMA) i inne modele, które dotyczą opóźnień związanych z błędami można oszacować za pomocą instrukcji FIT i symulować lub prognozować za pomocą instrukcji SOLVE. Modele ARMA dla procesu błędu są często używane w modelach z autokorelowanymi resztami. Makro AR można wykorzystać do określenia modeli z autoregresyjnymi procesami błędów. Makro MA może być użyte do określenia modeli z ruchomymi średnimi procesami błędów. Błędy autoregresyjne Model z błędami autoregresyjnymi pierwszego rzędu, AR (1), ma postać, podczas gdy proces błędu AR (2) ma formę i tak dalej dla procesów wyższego rzędu. Zauważ, że s są niezależne i identycznie rozmieszczone i mają oczekiwaną wartość 0. Przykład modelu ze składnikiem AR (2) jest i tak dalej dla procesów wyższego rzędu. Na przykład można napisać prosty model regresji liniowej z błędami średniej ruchomej MA (2), ponieważ MA1 i MA2 są parametrami średniej ruchomej. Zauważ, że RESID. Y jest automatycznie definiowany przez PROC MODEL, ponieważ funkcja ZLAG musi być używana dla modeli MA w celu skracania rekurencji opóźnień. Gwarantuje to, że błędy opóźnione zaczynają się od zera w fazie zalewania opóźnienia i nie propagują brakujących wartości, gdy brakuje zmiennych okresu opóźniania i zapewniają, że przyszłe błędy są zerowe, a nie brakują podczas symulacji lub prognozowania. Szczegółowe informacje na temat funkcji opóźnienia znajdują się w sekcji Logika opóźnień. Ten model napisany przy użyciu makra MA jest następujący: Formularz ogólny dla modeli ARMA Ogólny proces ARMA (p, q) ma następującą postać Model ARMA (p, q) można określić w następujący sposób: gdzie AR i i MA j reprezentują parametry autoregresji i średniej ruchomej dla różnych opóźnień. Możesz użyć dowolnych nazw dla tych zmiennych i istnieje wiele równoważnych sposobów na to, aby specyfikacja mogła zostać napisana. Wektorowe procesy ARMA można również oszacować za pomocą MODELU PROC. Na przykład proces dwóch zmiennych AR (1) dla błędów dwóch zmiennych endogenicznych Y1 i Y2 można określić w następujący sposób: Problemy konwergencji z modelami ARMA Modele ARMA mogą być trudne do oszacowania. Jeśli oszacowania parametrów nie mieszczą się w odpowiednim zakresie, terminy rezydualne modeli ruchomych rosną wykładniczo. Obliczone reszty dla późniejszych obserwacji mogą być bardzo duże lub mogą być przepełnione. Może się tak zdarzyć, ponieważ zastosowano niewłaściwe wartości początkowe lub ponieważ iteracje odeszły od rozsądnych wartości. Należy zachować ostrożność przy wybieraniu wartości początkowych dla parametrów ARMA. Wartości początkowe 0,001 dla parametrów ARMA zwykle działają, jeśli model dobrze pasuje do danych, a problem jest dobrze kondycjonowany. Należy zauważyć, że model MA może często być aproksymowany przez model AR wysokiego rzędu i na odwrót. Może to spowodować wysoką kolinearność w mieszanych modelach ARMA, co z kolei może spowodować poważne pogorszenie warunków w obliczeniach i niestabilność oszacowań parametrów. Jeśli masz problemy z konwergencją podczas szacowania modelu z procesami błędów ARMA, spróbuj oszacować w krokach. Najpierw użyj instrukcji FIT do oszacowania tylko parametrów strukturalnych z parametrami ARMA utrzymywanymi do zera (lub do racjonalnych wcześniejszych oszacowań, jeśli są dostępne). Następnie użyj innej instrukcji FIT, aby oszacować tylko parametry ARMA, używając wartości parametrów strukturalnych z pierwszego uruchomienia. Ponieważ wartości parametrów strukturalnych prawdopodobnie będą zbliżone do ich ostatecznych szacunków, oszacowania parametrów ARMA mogą się teraz zbiegać. Na koniec użyj innej instrukcji FIT, aby uzyskać równoczesne oszacowania wszystkich parametrów. Ponieważ początkowe wartości parametrów są prawdopodobnie bardzo zbliżone do końcowych szacunków łącznych, oszacowania powinny szybko zbiegać się, jeśli model jest odpowiedni dla danych. Warunki początkowe AR Początkowe opóźnienia warunków błędów modeli AR (p) można modelować na różne sposoby. Metody autoregressive uruchamiania błędów obsługiwane przez procedury SASETS są następujące: warunkowe najmniejszych kwadratów (procedury ARIMA i MODEL) bezwarunkowe procedury najmniejszych kwadratów (procedury AUTOREG, ARIMA i MODEL) maksymalne prawdopodobieństwo (procedury AUTOREG, ARIMA i MODEL) Yule-Walker (AUTOREG tylko procedura) Hildreth-Lu, która usuwa pierwsze p obserwacje (tylko procedura MODEL) Patrz rozdział 8, Procedura AUTOREG, dla wyjaśnienia i omówienia zalet różnych metod uruchamiania AR (p). Inicjalizacja CLS, ULS, ML i HL może być wykonywana przez PROC MODEL. W przypadku błędów AR (1) te inicjalizacje mogą zostać wykonane zgodnie z tabelą 18.2. Metody te są równoważne w przypadku dużych próbek. Tabela 18.2 Inicjacje wykonywane przez MODEL PROC: AR (1) BŁĘDY Początkowe opóźnienia warunków błędów modeli MA (q) można również modelować na różne sposoby. Następujące paradygmaty rozruchu błędu średniej ruchomej są obsługiwane przez procedury ARIMA i MODEL: bezwarunkowe minimalne kwadraty warunkowe najmniejsze kwadraty Metoda warunkowych najmniejszych kwadratów szacowania średnich błędów ruchu nie jest optymalna, ponieważ ignoruje problem rozruchowy. Zmniejsza to efektywność szacunków, chociaż pozostają one bezstronne. Początkowe opóźnione reszty, rozciągające się przed rozpoczęciem danych, przyjmuje się jako 0, ich bezwarunkową oczekiwaną wartość. Wprowadza to różnicę między tymi resztami a uogólnionymi resztami najmniejszych kwadratów dla średniej ruchomej kowariancji, która, w przeciwieństwie do modelu autoregresyjnego, utrzymuje się przez zbiór danych. Zwykle różnica ta szybko zbiega się do 0, ale w przypadku prawie nieodwracalnych średnich ruchomych konwergencja przebiega dość wolno. Aby zminimalizować ten problem, powinieneś mieć mnóstwo danych, a oszacowania parametrów średniej ruchomej powinny znajdować się w zakresie odwracalności. Ten problem można poprawić kosztem pisania bardziej złożonego programu. Bezwarunkowe estymaty najmniejszych kwadratów dla procesu MA (1) można uzyskać, określając model w następujący sposób: Błędy średniej ruchomej mogą być trudne do oszacowania. Powinieneś rozważyć zastosowanie przybliżenia AR (p) do procesu średniej ruchomej. Proces średniej ruchomej może być zwykle dobrze zindetyzowany przez proces autoregresyjny, jeśli dane nie zostały wygładzone lub zróżnicowane. Makro AR Makro AR AR SAS generuje instrukcje programowania dla PROC MODEL dla modeli autoregresyjnych. Makro AR jest częścią oprogramowania SASETS i żadne specjalne opcje nie muszą być ustawione, aby używać makra. Proces autoregresyjny można zastosować do błędów równań strukturalnych lub samych szeregów endogenicznych. Makro AR może być używane dla następujących typów autoregresji: nieograniczona autoregresja wektora autoregresji ograniczona autoregresja Jednawiściowa autoregresja Aby modelować termin błędu równania jako proces autoregresyjny, należy zastosować następującą instrukcję po równaniu: Załóżmy na przykład, że Y jest funkcja liniowa błędu X1, X2 i AR (2). Piszemy ten model w następujący sposób: Wywołania AR muszą nadejść po wszystkich równaniach, do których proces ma zastosowanie. Poprzednie wywołanie makra, AR (y, 2), tworzy instrukcje pokazane na wyjściu LIST na rysunku 18.58. Rysunek 18.58 LISTA Opcja Wyjście dla modelu AR (2) Zmienne wstępnie zdefiniowane PRED są tymczasowymi zmiennymi programu używanymi w taki sposób, że opóźnienia reszt są poprawnymi resztami, a nie tymi nowo zdefiniowanymi przez to równanie. Zauważ, że jest to odpowiednik instrukcji jawnie zapisanych w sekcji Ogólne Formularze dla modeli ARMA. Możesz także ograniczyć parametry autoregresji do zera w wybranych opóźnieniach. Na przykład, jeśli potrzebujesz parametrów autoregresji w opóźnieniach 1, 12 i 13, możesz użyć następujących instrukcji: Te instrukcje generują wyjście pokazane na rysunku 18.59. Rysunek 18.59 LISTA Wyjście Opcja Wyjście dla modelu AR z opóźnieniami na poziomie 1, 12 i 13 Procedura MODEL Lista skompilowanych deklaracji kodu programu jako przeanalizowana PRED. yab x1 c x2 RESID. y PRED. y - RZECZYWISTA. y BŁĄD. y PRED. y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) yl12 ZLAG12 (y - perdy) yl13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y wariacje na temat warunkowej metody najmniejszych kwadratów, w zależności od tego, czy obserwacje na początku serii są wykorzystywane do rozgrzania procesu AR. Domyślnie metoda warunkowych najmniejszych kwadratów AR wykorzystuje wszystkie obserwacje i przyjmuje zera dla początkowych opóźnień autoregresyjnych. Korzystając z opcji M, możesz poprosić, aby AR użył zamiast tego metody bezwarunkowego najmniejszych kwadratów (ULS) lub maksymalnych prawdopodobieństw (ML). Na przykład Dyskusje na temat tych metod przedstawiono w sekcji Warunki początkowe AR. Korzystając z opcji MCLS n, możesz poprosić o użycie pierwszych n obserwacji do obliczenia oszacowań początkowych opóźnień autoregresyjnych. W takim przypadku analiza rozpoczyna się od obserwacji n 1. Na przykład: Można użyć makra AR, aby zastosować model autoregresyjny do zmiennej endogenicznej, zamiast do terminu błędu, za pomocą opcji TYPEV. Na przykład, jeśli chcesz dodać pięć ostatnich opóźnień Y do równania w poprzednim przykładzie, możesz użyć AR do wygenerowania parametrów i opóźnień za pomocą następujących instrukcji: Poprzednie instrukcje generują dane wyjściowe pokazane na rysunku 18.60. Rysunek 18.60 LISTA Opcja Wyjście dla modelu AR Y Ten model przewiduje Y jako liniową kombinację X1, X2, punktu przecięcia i wartości Y w ostatnich pięciu okresach. Nieograniczona autoregresja wektorowa Aby modelować terminy błędów zbioru równań jako proces autoregresyjny wektorów, po równaniach należy użyć następującej postaci makra AR: Wartość processname to dowolna nazwa, którą podaje się do AR, aby użyć jej przy tworzeniu nazw dla autoregresji parametry. Możesz użyć makra AR do modelowania kilku różnych procesów AR dla różnych zestawów równań, używając różnych nazw procesów dla każdego zestawu. Nazwa procesu zapewnia, że używane nazwy zmiennych są niepowtarzalne. Użyj krótkiej wartości processname dla procesu, jeśli prognozy parametrów mają zostać zapisane w zestawie danych wyjściowych. Makro AR próbuje skonstruować nazwy parametrów mniejsze lub równe ośmiu znaków, ale jest to ograniczone przez długość nazwy procesu. który jest używany jako prefiks dla nazw parametrów AR. Wartość variablelist jest listą zmiennych endogenicznych dla równań. Załóżmy na przykład, że błędy dla równań Y1, Y2 i Y3 są generowane przez proces autoregresyjny wektora drugiego rzędu. Możesz użyć następujących instrukcji: które generują następujące dla Y1 i podobny kod dla Y2 i Y3: Tylko metoda warunkowych najmniejszych kwadratów (MCLS lub MCLS n) może być użyta do procesów wektorowych. Możesz również użyć tej samej formy z ograniczeniami, że macierz współczynników wynosi 0 w wybranych opóźnieniach. Na przykład, poniższe instrukcje stosują proces wektorowy trzeciego rzędu do błędów równania ze wszystkimi współczynnikami w opóźnieniu 2 ograniczonym do 0 i ze współczynnikami w opóźnieniach 1 i 3 nieograniczony: Możesz modelować trzy serie Y1Y3 jako wektor autoregresyjny w zmiennych zamiast w błędach za pomocą opcji TYPEV. Jeśli chcesz modelować Y1Y3 jako funkcję przeszłych wartości Y1Y3 i niektórych egzogennych zmiennych lub stałych, możesz użyć AR do wygenerowania instrukcji dla warunków opóźnienia. Napisz równanie dla każdej zmiennej dla nieautoregresywnej części modelu, a następnie wywołaj AR z opcją TYPEV. Na przykład: Nieautoregresywna część modelu może być funkcją zmiennych egzogenicznych lub może przechwytywać parametry. Jeśli nie ma elementów egzogennych w wektorowym modelu autoregresji, w tym żadnych przechwyceń, wówczas przypisz zero do każdej ze zmiennych. Musi istnieć przyporządkowanie do każdej zmiennej przed wywołaniem AR. Ten przykład modeluje wektor Y (Y1 Y2 Y3) jako funkcję liniową tylko jego wartości w poprzednich dwóch okresach i wektor błędu szumu białego. Model ma 18 (3 3 3 3) parametrów. Składnia makr AR Istnieją dwa przypadki składni makra AR. Gdy ograniczenia na wektorowym procesie AR nie są potrzebne, składnia makra AR ma formę ogólną określającą prefiks dla AR do użycia przy konstruowaniu nazw zmiennych potrzebnych do zdefiniowania procesu AR. Jeśli endolista nie jest określony, lista endogeniczna przyjmuje domyślną nazwę. która musi być nazwą równania, do którego ma być zastosowany proces błędu AR. Wartość nazwy nie może przekraczać 32 znaków. jest kolejnością procesu AR. Określa listę równań, do których ma być zastosowany proces AR. Jeśli podano więcej niż jedną nazwę, tworzony jest nieograniczony proces wektorowy z resztami strukturalnymi wszystkich równań zawartych jako regresory w każdym z równań. Jeśli nie zostanie określony, endolist domyślnie nazwie. określa listę opóźnień, w których mają zostać dodane warunki AR. Współczynniki terminów w niewystępujących opóźnieniach są ustawione na 0. Wszystkie wymienione opóźnienia muszą być mniejsze lub równe nlag. i nie może być żadnych duplikatów. Jeśli nie jest określony, lista zaludnia przyjmuje domyślnie wszystkie opóźnienia od 1 do nlag. określa metodę szacowania do wdrożenia. Prawidłowe wartości M to CLS (warunkowe estymaty najmniejszych kwadratów), ULS (bezwarunkowe estymaty najmniejszych kwadratów) i ML (szacunki największej wiarygodności). MCLS jest domyślnie. Tylko MCLS jest dozwolone, gdy określono więcej niż jedno równanie. Metody ULS i ML nie są obsługiwane przez AR w wektorowych modelach AR. Określa, że proces AR ma być stosowany do samych zmiennych endogenicznych, a nie do reszt strukturalnych równań. Ograniczona autoregresja wektorowa Możesz kontrolować, które parametry są uwzględnione w procesie, ograniczając do 0 parametrów, których nie uwzględniasz. Najpierw użyj AR z opcją DEFER, aby zadeklarować listę zmiennych i zdefiniować wymiar procesu. Następnie użyj dodatkowych wywołań AR, aby wygenerować warunki dla wybranych równań z wybranymi zmiennymi w wybranych opóźnieniach. Na przykład Wygenerowane równania błędu są następujące: Ten model stwierdza, że błędy dla Y1 zależą od błędów obu Y1 i Y2 (ale nie Y3) w obu opóźnieniach 1 i 2 oraz że błędy dla Y2 i Y3 zależą od poprzednie błędy dla wszystkich trzech zmiennych, ale tylko w opóźnieniu 1. Składnia makr AR dla ograniczonego wektora AR Alternatywne użycie AR pozwala na nałożenie ograniczeń na proces AR wektorów przez kilkakrotne wywołanie AR w celu określenia różnych warunków AR i opóźnień dla różnych równania. Pierwsze wywołanie ma formę ogólną określającą prefiks dla AR do użycia przy konstruowaniu nazw zmiennych potrzebnych do zdefiniowania procesu AR wektor. określa kolejność procesu AR. Określa listę równań, do których ma być zastosowany proces AR. Określa, że AR nie generuje procesu AR, ale oczekuje na dalsze informacje określone w późniejszych wywołaniach AR dla tej samej wartości nazwy. Kolejne wywołania mają formę ogólną taką samą jak w pierwszym wywołaniu. Określa listę równań, do których mają zastosowanie specyfikacje w tym wywołaniu AR. Tylko nazwy określone w wartości endolistu pierwszego wywołania wartości nazwy mogą pojawić się na liście równań w eqlist. Określa listę równań, których opóźnione reszty strukturalne mają być włączone jako regresory w równaniach w eqlist. Tylko nazwy w końcówce pierwszego wywołania wartości nazwy mogą pojawić się na liście varlist. Jeśli nie zostanie określony, varlist domyślnie będzie endolistą. określa listę opóźnień, w których mają zostać dodane warunki AR. Współczynniki terminów na opóźnieniach niewymienionych na liście są ustawione na 0. Wszystkie wymienione opóźnienia muszą być mniejsze lub równe wartości nlag. i nie może być żadnych duplikatów. Jeśli nie jest określony, laglist domyślnie przyjmuje wszystkie opóźnienia od 1 do nlag. Makro MA Makro MA SAS generuje instrukcje programowania dla MODELU PROC dla modeli średniej ruchomej. Makro MA jest częścią oprogramowania SASETS, a do korzystania z makra nie są potrzebne żadne specjalne opcje. Proces błędu średniej ruchomej można zastosować do błędów równania strukturalnego. Składnia makra MA jest taka sama jak makro AR, z tym że nie ma argumentu TYPE. Gdy używane są makra MA i AR połączone, makro MA musi być zgodne z makrem AR. Następujące instrukcje SASIML generują proces błędu ARMA (1, (1 3)) i zapisują go w zbiorze danych MADAT2. Poniższe instrukcje modelu MODEL są używane do oszacowania parametrów tego modelu za pomocą struktury maksymalnego błędu wiarygodności: Szacunki parametrów wytworzonych przez ten przebieg pokazano na rysunku 18.61. Rysunek 18.61 Szacunki z procesu ARMA (1, (1 3)) Istnieją dwa przypadki składni dla makra MA. Gdy ograniczenia na wektorowym procesie MA nie są potrzebne, składnia makra MA ma ogólną postać określającą przedrostek dla MA do zastosowania w konstruowaniu nazw zmiennych potrzebnych do zdefiniowania procesu MA i jest domyślną endolistą. jest kolejnością procesu MA. Określa równanie, do którego ma zastosowanie proces MA. Jeśli podana jest więcej niż jedna nazwa, oszacowanie CLS jest używane do procesu wektorowego. określa opóźnienia, w których mają zostać dodane warunki umowy o partnerstwie. Wszystkie wymienione opóźnienia muszą być mniejsze lub równe nlag. i nie może być żadnych duplikatów. Jeśli nie jest określony, lista zaludnia przyjmuje domyślnie wszystkie opóźnienia od 1 do nlag. określa metodę szacowania do wdrożenia. Prawidłowe wartości M to CLS (warunkowe estymaty najmniejszych kwadratów), ULS (bezwarunkowe estymaty najmniejszych kwadratów) i ML (szacunki największej wiarygodności). MCLS jest domyślnie. Tylko MCLS jest dozwolona, gdy w endolicie podano więcej niż jedno równanie. Składnia makr MA dla ograniczonej średniej ruchomej wektora Alternatywne wykorzystanie MA pozwala na nałożenie ograniczeń na wektorowy proces MA poprzez kilkukrotne wywołanie MA w celu określenia różnych warunków MA i opóźnień dla różnych równań. Pierwsze wywołanie ma formę ogólną, określającą prefiks dla MA do zastosowania w konstruowaniu nazw zmiennych potrzebnych do zdefiniowania wektora procesu MA. określa kolejność procesu MA. Określa listę równań, do których ma zastosowanie proces MA. określa, że MA nie generuje procesu MA, ale oczekuje na dalsze informacje określone w późniejszych wezwaniach MA dla tej samej wartości nazwy. Kolejne wywołania mają formę ogólną taką samą jak w pierwszym wywołaniu. Określa listę równań, do których mają zastosowanie specyfikacje w niniejszym zaproszeniu MA. Określa listę równań, których opóźnione reszty strukturalne mają być włączone jako regresory w równaniach w eqlist. określa listę opóźnień, w których mają zostać dodane warunki umowy o partnerstwie.
No comments:
Post a Comment